
Unitary Method and Time and Work

Direct variation examples:

- * More amount, more things to buy
- * Less things bought; less amount paid
- * More petrol, more distance travelled
- * More distance travelled, more time taken, more petrol, more amount paid
- * Less time travelled, less distance covered, less petrol used, less amount paid
- * More work done; more amount earned

Indirect variation examples:

- * More people worked; less days taken to do it
- * Less people, more days to consume food
- * More speed, less time taken to travel
- * Less rate of filling, more time to fill the tank

Direct variation (divide)	Indirect variation (multiply)
200 km travelled in 5 hours. 400 km	200 people work for 5 hours. 400
travelled in ??? hours	people complete in ??? hours
More distance needs more time	More people take less time
Unitary	Unitary
200 km <u>travelled in</u> → 5 hours	200 people $$ do work in $$ 5 hours
$1 \text{ km} \xrightarrow{\text{travelled in}} ???$	1 person $$ does work in $$???
$1 \text{ km} \xrightarrow{\text{travelled in}} ???$ Divide: $(5 \div 200) \times 1$	1 person does work in → ??? Multiply: $(5 \times 200) \div 1$
	Multiply: $(5 \times 200) \div 1$ 1 person takes 1000 hours to work
Divide : $(5 \div 200) \times 1$	Multiply : $(5 \times 200) \div 1$

In general:		In g	eneral:	
200 km	5 hrs	200) p	5 hrs
400 km	x hrs	400) p	x hrs
$\frac{5}{200} = \frac{x}{400}$			$5 \times 200 = x \times 400$ $x = 2.5 hrs$	
<i>x</i>	$x = 10 \ hrs$			

Time and Work

A can complete a work in X hours. B can complete the work in Y hours. If both work together, how many hours is required to complete the work?

Workers	Time to complete in hours	Work done in 1 hour
А	Х	$\frac{1}{X}$
В	Y	$\frac{1}{Y}$
A+B		$\frac{1}{X} + \frac{1}{Y}$

In 1 hour, A completes 1/X th of the work.

In 1 hour, B completes 1/Y th of the work.

In 1 hour, if both work together, (1/X + 1/Y) th part of the work is completed

$$\frac{1}{X} + \frac{1}{Y} = \frac{X+Y}{XY}$$

Work $\frac{X+Y}{XY}$ time taken \rightarrow 1 hour

Work 1 (100%) $\xrightarrow{\text{time taken}}$ hours??

Total work completed is $\frac{XY}{X+Y}$

Example:

Days required to complete if both work together?			
	Days	Work in 1 day	Work done together
А	10	1/10	
В	15	1/15	
A+B		1/10 + 1/15 = 1/6	6 days

A needs 10 days to complete a work. B needs 15 days to complete the work. Days required to complete if both work together?

1/6th of work done in 1 day.

Full work (1) done in
$$\frac{1 \times 1}{\frac{1}{6}} = 6$$
 days

2. A can do a work in 20 days. B can do it in 24 days. C can do in 30 days. B left after 2 days. How many days do A and C require to complete?

	Days	Work in 1 day	Work done together
А	20	1/20	
В	24	1/24	
С	30	1/30	
A+B+C		1/20 + 1/24 + 1/30 = 1/8	8 days
A+C		1/20 + 1/30 = 1/12	12 days

Work by A, B, C for 2 days = $2\left(\frac{1}{20} + \frac{1}{24} + \frac{1}{30}\right) = 2 \times \frac{1}{8} = \frac{1}{4}$

 $1/4^{\text{th}}$ of the work done in 2 days by A, B, C working together. On the 3^{rd} day, remaining work to be done by A and C is $1 - \frac{1}{4} = 3/4^{\text{th}}$ of the work.

A + C can do 1/12th of the work in 1 day.

Work $\frac{1}{12}$ $\xrightarrow{\text{time taken}}$ 1 day Work $\frac{3}{4}$ $\xrightarrow{\text{time taken}}$ days??

$$\frac{3/4}{1/12} = 9 \ days$$

A, B, C worked for first 2 days and completed $1/4^{\text{th}}$ of the work. A and C worked for next 9 days to complete rest $3/4^{\text{th}}$ of the work. Total work took 11 days to complete.

3. X and Y take 18 days, Y and Z take 24 days, X and Z take 36 days to do some work. If all work together, how many days are required to complete? If all three work separately, how many days do they take?

•	Days	Work in 1 day
X+Y	18	1/18
Y+Z	24	1/24
X+Z	36	1/36
2(X+Y+Z)		1/18 + 1/24 + 1/36 = 1/8

 $X + Y + Z = \frac{1/8}{2} = \frac{1}{16}$ of the work done in 1 day by X, Y, and Z All three together take 16 days to complete.

	1 day combined work	1 day individual work	Days required by each
X+Y+Z	1/16		
X+Y	1/18	Z = 1/16 - 1/18 = 1/144	144 days
Y+Z	1/24	X = 1/16 - 1/24 = 1/48	48 days
X+Z	1/36	Y = 1/16 - 1/36 = 5/144	28 days

X+Y+Z = 1/16

 $(X+Y+Z) - (X+Z) = Y = 1/16 - 1/36 = 5/144^{th}$ work

5/144th work done by Y in 1 day. To do 100% work (1), Y needs $\frac{1}{5/144} = \frac{144}{5} \approx 28 \ days$

<u>Verification</u> X takes 48 days Y takes 28 days (approximately) Z takes 144 days

In 1 day, all three together do $\frac{1}{48} + \frac{1}{28} + \frac{1}{144} = \frac{4}{63}$

4/63rd work done by all three in 1 day 100% work done in $\frac{1}{\frac{4}{63}} = \frac{63}{4} \approx 16$ days

4. 6 people can do some work in 8 days. How many days do 12 people need to do the same work?

Method 1:

	Days	1 day work
6 people	8	1/8 th

6 people $\xrightarrow{\text{ in one day, do}} \frac{1}{8}$ th work

12 people <u>in one day, do</u> ???

$$\frac{12 \times \frac{1}{8}}{6} = \frac{3/2}{6} = \frac{1}{4}$$

 $1/4^{\text{th}}$ work is done by 12 people in 1 day. Therefore, 12 people take 4 days to do the work.

Method 2: Inverse variation unitary method

More people need less days (multiply)

6 people $\xrightarrow{\text{do work in}}$ 8 days 1 person $\xrightarrow{\text{does work in}}$ 8 x 6 days 12 people $\xrightarrow{\text{do work in}}$ $\xrightarrow{48 \times 1}_{12}$ = 4 days

- or - $8 \times 6 = x \times 12$. Therefore, x = 4

5. Taps A and B can fill a tank in 15 hours and 20 hours respectively. Tap C can empty the tank in 25 hours. What is the time taken for the tank to be filled if all taps are turned on?

Taps	Hours to fill/empty	1 hour work
Α	15	1/15
В	20	1/20
С	25	1/25

A and B fill. C empties. Therefore, in 1 hour, work done by all three is

$$\frac{1}{15} + \frac{1}{20} - \frac{1}{25} = \frac{47}{300}$$

In 1 hour, all three fill 47/300th of the tank. Time to fill the tank is $\frac{300}{47} \approx 6.4$ hrs

Taps	Hours to fill/empty	1 hour work	Time to fill
А	15	1/15	
В	20	1/20	
С	25	1/25	
A+B-C		1/15+1/20-1/25=47/300	300/47 hrs

