Some tips for quick calculations

* Squaring numbers ending with 5 $35^2 = 1225$ $75^2 = 5625$

a. Multiply the 10th place digit with its next number $(n \times (n + 1))$ b. Attach 25 to the product

 35×35 10th place digit is 3. Multiply 3 with its next number 4 $3 \times (3 + 1) = 12$. Attach 25 to 12 to make it 1225

 65×65 $6 \times (6 + 1) = 6 \times 7 = 42$ Therefore, $65 \times 65 = 4225$

This is applicable to higher digit numbers also. $245 \times 245 = (24 \times (24 + 1))25 = (24 \times 25)25 = 60025$

* Multiplying two-digit numbers with 11

 $24 \times 11 = 264$ a. Add the two digits, 2+4 = 6b. Place it between the two digits to get 264 c. The product is written as 2(2+4)6

 $86 \times 11 = 946$ d. If a two-digit number is obtained, as in 8+6=14e. The number looks like this 8(8+6)6 = 8(14)6f. Add 1 to the 10^{th} place digit, 8 to get 9 g. The product becomes 946

* Multiplying three-digit numbers with 11 361 × 11 = 3971

Method same as that for two-digit numbers a. 3(3+6)(6+1)1 = 3971

8452 × 11 b. 8(8+4)(4+5)(5+2)2 = 8(12)(9)(7)2 = 92972

* Identifying if a number is divisible by 11

- a. Add all digits in odd places
- b. Add all digits in even places
- c. Subtract one from the other
- d. If either zero or 11 is obtained, then the number is divisible by 11

Ex: 92972 Odd place digits -9+9+2 = 20Even place digits -2+7 = 920-9 = 11Therefore, 92972 is divisible by 11

Ex: 634579Odd places -3+5+9 = 17Even places -6+4+7 = 1717 - 17 = 0Therefore, 634579 is divisible by 11

* Identifying if a number is divisible by 9

a. Add all the digitsb. If the sum adds up to 9 or its multiples, the number is divisible by 9

Ex: 769536 7+6+9+5+3+6 = 27 2+7=9 Therefore, 769536 is divisible by 9

For speeding up further, eliminate all 9's in the number, and any two-digit numbers that add up to 9 765 (9 is removed, 3+6=9) 7+6+5=18, 1+8=9

* Identifying if a number is divisible by 3 or 6

a. Add all the digitsb. If the sum adds up to 3, 6 or 9, it is divisible by 3c. If it is an even number, it is divisible by 6

769536 is divisible by 3, 6 and 9

* Adding three consecutive numbers

7 + 8 + 9 = 24

a. Multiply the middle number by 3 7 + 8 + 9 = 8 \times 3 = 24 60 + 61 + 62 = 61 \times 3 = 183

This applies to all odd consecutive numbers (middle number x number of items) $24 + 25 + 26 + 27 + 28 = 26 \times 5 = 130$ $57 + 58 + 59 + 60 + 61 + 62 + 63 = 60 \times 7 = 420$

For even consecutive numbers, take middle two terms $14 + 15 + 16 + 17 = (15 + 16) \times \frac{4}{2} = 31 \times 2 = 62$ $65 + 66 + 67 + 68 + 69 + 70 = (67 + 68) \times \frac{6}{2} = 135 \times 3 = 405$

* Adding consecutive number starting from 1

 $1+2+3+4+\ldots+50$

a. $\frac{n \times (n+1)}{2}$ n is the last number, 50 b. $\frac{50 \times 51}{2} = 1275$

* Adding consecutive numbers starting from any number

20+21+22+...+39+40

a.
$$\frac{40 \times 41}{2} = 820$$

b. $\frac{19 \times 20}{2} = 190$
c. $820 - 190 = 630$

* Finding the remainder when a number is divided by 9 6875/9

a. Add all digits
6+8+7+5
b. Here, all four are consecutive numbers. (5+6+7+8 = 13 x 2=26)
c. 2+6=8
c. 2+6=8

d. 8 is the remainder when 6875 is divided by 9

* Squares

Squares of numbers ending with	Units place of the square
1,9	1
2,8	4
3,7	9
4, 6	6
5	5
0	0

