Polynomials

Expression(s)	Term
0	Zero polynomial
Х	
x ²	
4	Monomials
-5x	
$\frac{-5x}{2x^5}$	
<i>x</i> + 2	
2y - 6	Binomials
$a^{3}-4$	

Examples	Linear	Quadratic	Cubic
Monomial	2 <i>x</i>	<i>x</i> ²	$4x^{3}$
Binomial	3x + 8	$x^2 - 25$	$8a^3 + 27b^3$
Trinomial		$3x^2 - 5x + 4$	$3x^3 + 5y^3 - 15xy$

An expression cannot be called a polynomial if any of the terms contain a power **less than 0**.

 \sqrt{x} , $a^{0.25}$, $\frac{1}{x}$ are not polynomials.

	Constant	Variable(s)	Exponent
5 <i>x</i>	5	x	1
$\frac{5x}{-4x^2}$	-4	x	2
24 <i>ab</i>	24	ab	1
9	9	x	0
$\frac{3}{-}ab^2$	3	ab	2
$\frac{-ab}{5}$	5		
1	1	x	-2
$\overline{x^2}$			

Zeroes (Roots) of a polynomial:

Any value(s) of a variable that makes the polynomial equal to zero.

x - 1When x = 1, the expression becomes zero.

 $a^2 = 49$ Roots are a = +7 and a = -7

2x + 7The root is -7/2

Linear expressions have **one** root Quadratic expressions have **two** roots Cubic expressions have **three** roots

Remainder theorem

To find the remainder when one polynomial is divided by another, without long division.

Example:

Find remainder when $x^3 - 3x^2 + 5x - 1$ is divided by x + 2

1. Find the zero (root) of the divisor. x + 2 = 0. Therefore x = -2

2. Substitute this root in the dividend $x^3 - 3x^2 + 5x - 1$ $p(-2) = (-2)^3 - 3(-2)^2 + 5(-2) - 1$ p(-2) = -31The remainder is -31

Factorisation

It means finding the factors of a polynomial. A quadratic polynomial has two factors. A cubic polynomial has three factors.

Finding factors using Factor theorem (for both quadratic and cubic)

A. Find factors of $x^2 + 3x - 10$

1. This is in the form of $px^2 + qx + r$ Find the factors of prFactors of 10 are +1, +2, +5, +10, -1, -2, -5, -10

2. Substitute one by one till the expression equates to zero. $p(1) = 1^2 + 3(1) - 10$ This is not equal to zero $p(2) = 2^2 + 3(2) - 10$ This is equal to zero 2 is one of the roots, and x - 2 is one of the factors

3. The second factor can be found either by long division, or by substituting the other factors.

$$p(-5) = (-5)^2 + 3(-5) - 10 = 0$$

4. The factors are (x - 2)(x + 5) and the roots are x = +2, x = -5

B. Find factors of $a^3 - 2a^2 - 5a + 6$

1. Factors of 6 are +1, -1, +2, -2, +3, -3, +6, -6

2. $p(1) = 1^3 - 2(1)^2 - 5(1) + 6 = 0$ $p(3) = 3^3 - 2(3)^2 - 5(3) + 6 = 0$ $p(-2) = (-2)^3 - 2(-2)^2 - 5(-2) + 6 = 0$ a - 1 is one of the factors a - 3 is one of the factors a + 2 is one of the factors

C. Find factors of $2x^2 + 5x - 3$ using Factor theorem

1. When the coefficient of the highest power is more than 1, make it 1 $2(x^2 + \frac{5}{2}x - \frac{3}{2})$

2. Find the factors of 3/2 +1, -1, +3/2, -3/2, +1/2, -1/2, +3, -3 are some of the factors

3. Substituting one by one, the factors are (2x - 1)(x + 3)Roots are $x = \frac{1}{2}$ and -3

Finding factors using Splitting the Middle Term theorem (only quadratic)

A. Factorise $x^2 - 5x + 6$

1. The equation is of the form $px^2 + qx + r$ Find the factors of prpr = 6Factors of 6 are 1, 2, 3, 6

2. When pr is **positive**, the factors must be **added** to form the middle term, q When pr is **negative**, the factors must be **subtracted** to form q

pr = +6q = -5

2 + 3 = 5. So, 2 and 3 must be selected such that their addition gives -5 -2 - 3 = -5

3. $x^2 - 5x + 6$ is changed to $x^2(-2x - 3x) + 6$ $x^2 - 2x - 3x + 6$

4. Take common out of 1^{st} and 2^{nd} , and 3^{rd} and 4^{th} x(x-2) - 3(x-2)(x-2)(x-3) are the factors. Roots are 2 and 3

B. Factorize $2a^2 - 5a - 3$

1. $2 \times 3 = 6$ 2. Factors of 6 are 1, 2, 3, 6 3. pr = -6. Since it is negative, factors must be subtracted to get the middle term, -5 4. 1 - 6 = -55. $2a^2 - a + 6a - 3$ 6. a(2a - 1) + 3(2a - 1)(2a - 1)(a + 3) are the factors. Roots are $\frac{1}{2}$ and -3

Algebraic Identities

I. $(x + y)^2 = x^2 + 2xy + y^2$ II. $(x - y)^2 = x^2 - 2xy + y^2$ III. $x^2 - y^2 = (x + y)(x - y)$ IV. $(x + a)(x + b) = x^2 + (a + b)x + ab$

A. Find 98×102 (100 - 2)(100 + 2) = $100^2 - 2^2 = 10000 - 4 = 9996$

B. Factorise $36x^2 - 25y^2$ $(6x)^2 - (5y)^2 = (6x + 5y)(6x - 5y)$

C. Factorise $9x^2 + 12xy + 4y^2$ 1. $(3x)^2 + 2(3x)(2y) + (2y)^2$ 2. It is in the form $a^2 + 2ab + b^2 = (a + b)^2$ 3. Factors are $(3x + 2y)^2$

V. $(x + y)^3 = x^3 + y^3 + 3xy(x + y)$ VI. $(x - y)^3 = x^3 - y^3 - 3xy(x - y)$ VII. If x + y + z = 0, $x^3 + y^3 + z^3 = 3xyz$

Factorise quadratic equation by splitting the middle term

