Introduction to Matrices

In a matrix, numbers are arranged in a box, in rows and columns. In singular, it is called a matrix, while in plural, they are called matrices.

Rows: The horizontal set of numbers form the rows **Columns**: The vertical set of numbers form the columns **Order of a matrix**: It is the number of rows and columns in a matrix **Element**: Each number is a matrix is an element

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} -3 & 5 & 0 \\ 0.6 & -7 & 8 \end{bmatrix} \qquad C = \begin{bmatrix} -4 & 45 \\ 6 & -82 \\ 12 & 0 \end{bmatrix}$$
$$D = \begin{bmatrix} 2 & 4 & 0 & -1 & 6 \end{bmatrix} \qquad E = \begin{bmatrix} 8 \\ -3 \\ 0 \\ 4 \\ 1 \end{bmatrix} \qquad F = \begin{bmatrix} 6 \end{bmatrix}$$

Matrix	Rows (m)	Columns (n)	Order $(m \times n)$	Elements	Туре
Α	2	2	2×2	4	Square
В	2	3	2 × 3	6	Vertical
С	3	2	3×2	6	Horizontal
D	1	5	1×5	5	Row matrix
E	5	1	5×1	5	Column matrix
F	1	1	1×1	1	Singleton matrix

An element is identified by this notation Matrix_{row,col}

$$A_{2,1} = 3$$

 $B_{1,2} = 5$

 $C_{3,2} = 0$

Туре	Description	m, n	Example
Square matrix	Number of rows and columns are equal	m = n	$\begin{bmatrix} 8 & 2 \\ 6 & 4 \end{bmatrix}$
Horizontal matrix	Columns more than rows	n > m	$\begin{bmatrix} -3 & 0.5 & 0 \\ 0.6 & 7 & -8 \end{bmatrix}$
Vertical matrix	Rows more than columns	m > n	$\begin{bmatrix} 4 & 8 \\ 2 & -1 \\ 9 & 0 \end{bmatrix}$
Row matrix	Only one row	m = 1	$[2 \ 14 \ 0 \ 1 \ -9]$
Column matrix	Only one column	<i>n</i> = 1	$\begin{bmatrix} 8\\9\\0\\4\\1\end{bmatrix}$
Diagonal matrix	Square. Nonzero elements only in diagonal	$\begin{array}{c} A_{m,m} \neq 0\\ A_{m,n} = 0 \end{array}$	$\begin{bmatrix} 3 & \bar{0} & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Null matrix	All elements zero		$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Unit (Identity) matrix	Diagonal. All elements 1	$\begin{array}{c} A_{m,m} = 1 \\ A_{m,n} = 0 \end{array}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Types of matrices

Null matrix can be square or rectangular. But identity matrix must be square.

Transpose of a matrix

It means interchanging rows and columns. The number of elements remain the same, but the order changes from $m \times n$ to $n \times m$

Matrix	Transpose
$A = \begin{bmatrix} 2 & 6 \end{bmatrix}$	$A^t = \begin{bmatrix} 2\\ 6 \end{bmatrix}$
$A = \begin{bmatrix} 2 & 5 \\ 6 & 9 \end{bmatrix}$	$A^t = \begin{bmatrix} 2 & 6\\ 5 & 9 \end{bmatrix}$
$A = \begin{bmatrix} 9 & 0 & -2 \\ 4 & -1 & 5 \end{bmatrix}$	$A^{t} = \begin{bmatrix} 9 & 4 \\ 0 & -1 \\ -2 & 5 \end{bmatrix}$
$A = \begin{bmatrix} 5\\6\\8 \end{bmatrix}$	$A^t = [5 \ 6 \ 8]$

[3 0 0]	[3 0 0]
$A = \begin{bmatrix} 0 & 7 & 0 \end{bmatrix}$	$A^t = \begin{bmatrix} 0 & 7 & 0 \end{bmatrix}$

Equality of a matrix

Matrix A = B if all corresponding elements are equal to each other.

$$A = \begin{bmatrix} 4 & 8 & 9 \\ 2 & 7 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 8 & 9 \\ 2 & 7 & 0 \end{bmatrix}$$

 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad B = \begin{bmatrix} 3 & 8 \\ 1 & 0 \end{bmatrix}$ If A=B, then a=3, b=8, c=1, d=0

Addition and Subtraction of matrices

To add or subtract, both matrices must have the same order.

 $A = \begin{bmatrix} 4 & 8 & 9 \\ 2 & 7 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 6 & -4 & 1 \\ 12 & 10 & -5 \end{bmatrix}$

Order of both is 2×3

$$A + B = \begin{bmatrix} 4+6 & 8+(-1) & 9+1 \\ 2+12 & 7+10 & 0+(-5) \end{bmatrix} = \begin{bmatrix} 10 & 7 & 10 \\ 14 & 17 & -5 \end{bmatrix}$$
$$A - B = \begin{bmatrix} 4-6 & 8-(-1) & 9-1 \\ 2-12 & 7-10 & 0-(-5) \end{bmatrix} = \begin{bmatrix} -2 & 9 & 8 \\ -10 & -3 & 5 \end{bmatrix}$$

Multiplication of matrix with a scalar

Scalar means a single number.

- $A = \begin{bmatrix} 2 & 5 \\ 6 & 9 \end{bmatrix} \qquad \qquad 4A = \begin{bmatrix} 8 & 20 \\ 24 & 36 \end{bmatrix}$
- $B = \begin{bmatrix} 2 & 14 & 0 & 1 & -9 \end{bmatrix} \qquad -3B = \begin{bmatrix} -6 & -42 & 0 & -3 & 27 \end{bmatrix}$

Multiplication of a matrix with another matrix

To multiply two matrices, they must be compatible.

It means that the number of **columns of the first matrix** and the number of **rows of the second** must be same.

$$A_{m,n} \times B_{n,p}$$

A and B matrices are compatible. The resultant product matrix will have the order $m \times p$.

Matrix A	Matrix B	Compatibility	Product order
[2 6] _{1,2}	$\begin{bmatrix} 2 & 3 & 5 \\ 1 & 0 & 7 \end{bmatrix}_{2,3}$	Yes	1 × 3
$\begin{bmatrix} 3 & 5 & 9 \\ 5 & 2 & 8 \end{bmatrix}_{2,3}$	$\begin{bmatrix} 9 & 3 & 7 \\ 0 & 3 & 2 \end{bmatrix}_{2,3}$	No	
$\begin{bmatrix} 6\\8\\3\\2 \end{bmatrix}_{4,1}$	[2 5] _{1,2}	Yes	4 × 2
$\begin{bmatrix} 3 & 5 & 7 \\ 1 & 4 & 9 \\ 0 & 4 & 0 \end{bmatrix}_{3,3}$	$\begin{bmatrix} 5 & 3 & 1 \\ 6 & 7 & 9 \end{bmatrix}_{2,3}$	No	
[4 6 7 8 9] _{1,5}	$\begin{bmatrix} 6\\8\\3\\5\\9 \end{bmatrix}_{5,1}$	Yes	1×1
$\begin{bmatrix} 4\\6\\7 \end{bmatrix}_{3,1}$	[4] _{1,1}	Yes	3 × 1
$\begin{bmatrix} 8 & 3 \\ 6 & 0 \end{bmatrix}_{2,2}$	$\begin{bmatrix} 7 & 4 \\ 2 & 1 \end{bmatrix}_{2,2}$	Yes	2 × 2
$[3 \ 4 \ 5]_{1,3}$	$[4 \ 7 \ 9]_{1,3}$	No	
$\begin{bmatrix} 5\\8\\5 \end{bmatrix}_{3,1}$	$\begin{bmatrix} 9\\2\\1 \end{bmatrix}_{3,1}$	No	

 $\begin{bmatrix} a11 & a12 & a13 \\ a21 & a22 & a23 \end{bmatrix} \times \begin{bmatrix} b11 & b12 \\ b21 & b22 \\ b31 & b32 \end{bmatrix}$

$\begin{bmatrix} a11 & a12 & a13 \\ a21 & a22 & a23 \end{bmatrix} \times \begin{bmatrix} b11 & b12 \\ b21 & b22 \\ b31 & b32 \end{bmatrix}$	$\begin{bmatrix} a11 & a12 & a13 \\ a21 & a22 & a23 \end{bmatrix} \times \begin{bmatrix} b11 & b12 \\ b21 & b22 \\ b31 & b32 \end{bmatrix}$
$\begin{bmatrix} a11 & a12 & a13 \\ a21 & a22 & a23 \end{bmatrix} \times \begin{bmatrix} b11 & b12 \\ b21 & b22 \\ b31 & b32 \end{bmatrix}$	$\begin{bmatrix} a11 & a12 & a13 \\ a21 & a22 & a23 \end{bmatrix} \times \begin{bmatrix} b11 & b12 \\ b21 & b22 \\ b31 & b32 \end{bmatrix}$

First element of result = sum of the products of the **first row** of A and all elements of the **first column** of B $c11 = a11 \times b11 + a12 \times b21 + a13 \times b31$

Second element of result = sum of the products of the **first row** of A and all elements of the **second column** of B $c12 = a11 \times b12 + a12 \times b22 + a13 \times b32$

Once all the columns of the second matrix are completed, start with second row of the first matrix, and repeat as above

Third element of result = sum of the products of the **second row** of A and all elements of the **first column** of B $c21 = a21 \times b11 + a22 \times b21 + a23 \times b31$

Fourth element of result = sum of the products of the **second row** of A and all elements of the **second column** of B $c22 = a21 \times b12 + a22 \times b22 + a23 \times b32$

All the rows of first matrix and all the columns of the second matrix are completed.

$$\begin{bmatrix} 2 & 4 & 3 \\ 5 & 2 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 6 \\ 5 & 5 \\ 8 & 2 \end{bmatrix} = \begin{bmatrix} 2 \times 7 + 4 \times 5 + 3 \times 8 & 2 \times 6 + 4 \times 5 + 3 \times 2 \\ 5 \times 7 + 2 \times 5 + 6 \times 8 & 5 \times 6 + 2 \times 5 + 6 \times 2 \end{bmatrix}$$
$$= \begin{bmatrix} 58 & 38 \\ 93 & 52 \end{bmatrix}$$
$$\begin{bmatrix} 7 & 6 \\ 5 & 5 \\ 8 & 2 \end{bmatrix} \times \begin{bmatrix} 2 & 4 & 3 \\ 5 & 2 & 6 \end{bmatrix} = \begin{bmatrix} 7 \times 2 + 6 \times 5 & 7 \times 4 + 6 \times 2 & 7 \times 3 + 6 \times 6 \\ 5 \times 2 + 5 \times 5 & 5 \times 4 + 5 \times 2 & 5 \times 3 + 5 \times 6 \\ 8 \times 2 + 2 \times 5 & 8 \times 4 + 2 \times 2 & 8 \times 3 + 2 \times 6 \end{bmatrix}$$
$$= \begin{bmatrix} 44 & 40 & 57 \\ 35 & 30 & 45 \\ 26 & 36 & 36 \end{bmatrix}$$

We can see that $AB \neq BA$ The order is different, and the resultant elements are different.

Multiplication of matrix with identity matrix

$$A = \begin{bmatrix} 2 & -4 \\ 5 & 6 \end{bmatrix} \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad AI = \begin{bmatrix} 2 \times 1 + 0 & 0 - 4 \times 1 \\ 5 \times 1 + 0 & 0 + 6 \times 1 \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ 5 & 6 \end{bmatrix}$$

$$AI = A$$

Just as $5 \times 1 = 5$, multiplying any matrix with identity matrix gives the same matrix.

Notes to remember: a. $AB \neq BA$ b. $(A + B)(A - B) \neq A^2 - B^2$ c. A + B = B + Ad. AI = Ae. $A(B + C) \neq AB + AC$

Applications of matrices

* Matrices are used to solve linear equations.

32a + 62b - c + 74d = 36 12a - 22b - 52c + 18d = 78 50a + 42b + 29c - 83d = 10727a - 59b + 92c - 47d = 123

It is too complex to solve linear equations when unknowns are more than two. The values are written in matrix form.

۲ <u>32</u>	62	-1 74 ן	[a]		ן 36 ז
12	-22	-52 18	b	_	78
50	42	29 - 83	C	_	107
L27	- 59	92 <u>- 4</u> 7	Ld		L123J

With suitable operations, the values of the unknowns are calculated.

* They have applications in engineering, artificial intelligence, data processing, computer graphics, optics, etc.

$\langle y_1 \rangle$		$\binom{w_{11}}{w_{11}}$	w_{12}	w_{13}	$\langle r_1 \rangle$
y_2	_	w_{21}	w_{22}	w_{23}	$\binom{w_1}{m}$
y_3	_	w_{31}	w_{32}	w_{33}	$\begin{pmatrix} x_2 \\ x_2 \end{pmatrix}$
$\langle y_4 \rangle$		$\setminus w_{41}$	w_{42}	w_{43}	(23)

* In electrical engineering, electric current flowing through various power lines can be calculated easily by placing the known values of voltage and admittances in matrix form.

