Linear Inequations in One Variable

Symbols

Symbols		
=	Equal to	
<	Less than	
\leq	Less than or equal to	
>	Greater than	
≥	Greater than or equal to	
Λ	And	
E	Belongs to	
U	Union	
Ω	Intersection	

Equation: 3x + 5 = 4x - 1Inequation: 4x - 5 > 8x + 2

Rules for solving inequations

Rule 1	0		
	across the inequality sign	3x > 8 - 5	
Rule 2	Negative term becomes <i>positive</i> when moved	$4x - 6 \le 9$	
	across the inequality sign	$4x \leq$	9 + 6
Rule 3	Inequation sign <i>does not</i> change if both side	$x \ge 8$	<i>y</i> < 12
	terms are multiplied or divided by same	$4x \ge 32$	$\frac{y}{3} < 4$
	<i>positive</i> value		$\overline{3}$
Rule 4	Inequation sign <i>reverses</i> if both side terms are	$x \ge 8$	<i>y</i> < 12
	multiplied or divided by same <i>negative</i> value	$-x \leq -8$	$\frac{y}{-2} > -6$
Rule 5	Inequation sign <i>reverses</i> if sign changes on	-x < 4	$-y \ge -8$
	both sides	x > -4	$y \le 8$
Rule 6	When reciprocals of the values are taken,	<i>x</i> > 5	1
	inequation sign <i>reverses</i>	1 1	$\frac{1}{v} \le 2$
		$\frac{1}{x} < \frac{1}{5}$	1
			$y \ge \frac{1}{2}$

Number systems

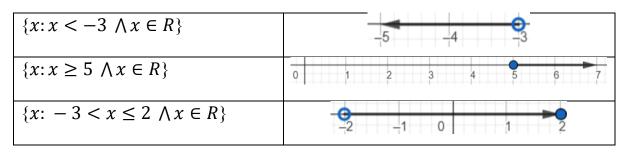
						Natura	al numbe	ers (N)	
-4	-3	-2	-1	0	1	2	3	4	5
			Whole numbers (W)						
Integers (Z or I)									

Rational numbers are in the form of p/q. They can be - non repeating (0.5, 0.25, 3.1)

- repeating (0.1111..., 4.3333...)

Irrational numbers cannot be represented in the form of a fraction, p/q Examples are $\sqrt{2}$, $\sqrt{5}$, π

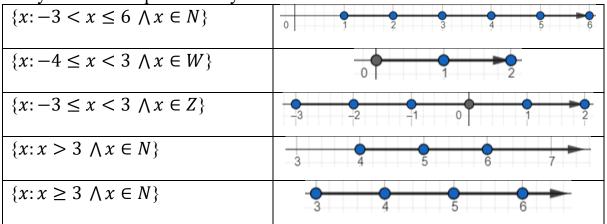
Rational + Irrational = Real numbers


Replacement set: The set from which a variable x is chosen **Solution set**: The subset of replacement set that satisfies the inequation

For inequation $-2 \le x < 5$			
Replacement set	Solution set		
N, natural numbers	$x = \{1, 2, 3, 4\}$		
W, whole numbers	$x = \{0, 1, 2, 3, 4\}$		
Z or I, integers	$x = \{-2, -1, 0, 1, 2, 3, 4\}$		
R, real numbers	$\{x: x \in \mathbb{R} \text{ and } -2 \le x < 5\}$		

The solution set for real numbers is described in set builder form.

Representation of the solution on the number line


* Representation of real numbers Hollow circle: Represents end of range with <, > Filled circle: Represents end of range with≤, ≥

$\{x: -4 \le x \le -2 \ \land x \in R\}$	
$\{x: 5 < x < 8 \land x \in R\}$	9 6 7 ► 8

* Representation of natural, whole numbers, integers Every number is represented by a filled circle

Combining inequations

$\{x: x > 3 and x \in R\}$	4 5		
$\{x: x \le 5 \text{ and } x \in R\}$	3 4 5	3 4 5	

$\{x: x \le 3 \text{ and } x \in R\}$	2 3	
$\{x: x \ge 5 \text{ and } x \in R\}$	6.	2

The solution sets of two inequations are:

P =	$\{-3, -2, -1, 0, 1, 2, 3, 4, 5\}$	
Q =	= {3, 4, 5, 6, 7, 8}	
$P \cap Q$	{3, 4, 5}	Common between both P and Q
$P \cup Q$	$\{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$	All numbers in both P and Q
P-Q	$\{-3, -2, -1, 0, 1, 2\}$	Numbers only in P, not in Q
Q - P	{6, 7, 8}	Numbers only in Q, not in P
$P \cap Q'$	$\{-3, -2, -1, 0, 1, 2\}$	P-Q
$P' \cap Q$	{6, 7, 8}	Q - P

