Solid		Lateral/Curved Surface Area	Total Surface Area	Volume
Cube	aaa	4a ²	6a ²	a ³
Cuboid	h	2(bh + lh)	2(bh+hl+lb)	lbh
Cone	h	πrl	$\pi r(r+l)$	$1 - x^{2}h$
		$l = \sqrt{h^2 + r^2}$		$\frac{3}{3}$
Cylinder	'n	2πrh	$2\pi r(r+h)$	$\pi r^2 h$
Hemisphere		$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^3$
Sphere		$4\pi r^2$	$4\pi r^2$	$\frac{4}{3}\pi r^3$

Surface Area and Volumes of Solids

For the same radius and height, volume of a cone is <u>one-third</u> the volume of a cylinder.

Volume of cylinder = $\pi r^2 h$ Volume of cone = $\frac{1}{3}\pi r^2 h$

For the same diameter and height, surface area of a sphere and curved surface area of cylinder are the <u>same</u>.

Surface area of sphere $= 4\pi r^2$ CSA of cylinder $= 2\pi rh = 2\pi r(2r) = 4\pi r^2$

a. Hollow cylinder:

Outer circle radius: R (diameter D) Inner circle radius: r (diameter d) Height: h

Thickness = $R - r = \frac{D - d}{2}$

i. Volume of hollow cylinder = outer volume – inner volume Volume = $\pi R^2 h - \pi r^2 h$ Volume of hollow cylinder = $\pi h(R^2 - r^2)$

ii. Total surface area = CSA of outer + CSA of inner + area of bottom disc + area of top disc CSA of outer cylinder = $2\pi Rh$ CSA of inner cylinder = $2\pi rh$ Total areas of top and bottom flat discs = $2 \times (\pi R^2 - \pi r^2) = 2\pi (R^2 - r^2)$ **Total surface area of hollow cylinder** = $2\pi Rh + 2\pi rh + 2\pi (R^2 - r^2)$

b. Hollow hemisphere (bowl):

Outer radius: R Inner radius: r

i. Volume of hollow hemisphere = outer volume – inner volume Volume = $\frac{2}{3}\pi R^3 - \frac{2}{3}\pi r^3$

Volume of hollow hemisphere = $\frac{2}{3}\pi(R^3 - r^3)$

ii. Total surface area = CSA of outer + CSA of inner + area of disc CSA of outer hemisphere = $2\pi R^2$ CSA of inner hemisphere = $2\pi r^2$ Area of flat disc = $\pi R^2 - \pi r^2 = \pi (R^2 - r^2)$ Total surface area = $2\pi R^2 + 2\pi r^2 + \pi R^2 - \pi r^2$ **Total surface area of hollow hemisphere = 3\pi R^2 + \pi r^2**

Combined solids

a. Cone and cylinder

Cylinder radius: R Cylinder height: H

Cone radius: r Cone height: h Cone slant height: $l = \sqrt{r^2 + h^2}$

i. Cone on cylinder: Total volume of solid = volume of cylinder + volume of cone $Vol = \pi R^2 H + \frac{1}{3}\pi r^2 h$

Total surface area = CSA of cylinder + base area of cylinder + disc area + CSA of cone TSA = $2\pi RH + \pi R^2 + \pi (R^2 - r^2) + \pi rl$

ii. Cone inside cylinder: Total volume of solid = volume of cylinder – volume of cone Vol = $\pi R^2 H - \frac{1}{3}\pi r^2 h$

Total surface area = CSA of cylinder + base area of cylinder + disc area + CSA of cone TSA = $2\pi RH + \pi R^2 + \pi (R^2 - r^2) + \pi rl$

Note: If radius of cone and cylinder are same, R = r, and disc area is zero.

b. Hemisphere and cylinder

Cylinder radius: R Hemisphere radius: r

i. Hemisphere on cylinder: Total volume of solid = volume of cylinder + volume of hemisphere Vol = $\pi R^2 h + \frac{2}{3}\pi r^3$

Total surface area = CSA of cylinder + base area + disc area + CSA of hemisphere TSA = $2\pi Rh + \pi R^2 + \pi (R^2 - r^2) + 2\pi r^2$ TSA = $2\pi Rh + 2\pi R^2 + \pi r^2$

ii. Hemisphere inside cylinder: Total volume of solid = volume of cylinder - volume of hemisphere $Vol = \pi R^2 h - \frac{2}{3}\pi r^3$

Total surface area = CSA of cylinder + base area + disc area + CSA of hemisphere TSA = $2\pi Rh + \pi R^2 + \pi (R^2 - r^2) + 2\pi r^2$ TSA = $2\pi Rh + 2\pi R^2 + \pi r^2$

Note: If radius of hemisphere and cylinder are same, R = r, and disc area is zero.

c. Two hemispheres on cylinder

A solid is made of two hemispheres on both flat surfaces of a cylinder. Total length of the solid is len.

Height of cylinder, h = len - 2r

Total volume = volume of two hemispheres + volume of the cylinder Volume of two hemispheres = volume of whole sphere $Vol = \frac{4}{3}\pi r^3 + \pi r^2 h$

Surface area of the solid = CSA of two hemispheres + CSA of cylinder CSA of two hemisphere = surface area of whole sphere Surface area of the solid = $4\pi r^2 + 2\pi rh$

